Weill Cornell Medical Research Building 413 E. 69th Street New York, NY

Jonathan Coan

Structural Option

Advisor: Dr. Boothby

Technical Report 2

Submitted: 11/2/11

Table of Contents

Executive Summary	3
Introduction	4
Structural Systems	5
Foundation System	5
Floor System	6
Lateral System	7
Beams and Columns	8
Design Codes and Standards	9
Structural Material	9
Building Loads	13
Dead Load	13
Live Load	13
Floor System Analysis	13
Existing Two-way Flat Plate System	14
One-Way Pan Joist System	15
Banded-Beam System	16
Composite Deck and Beam System	17
Conclusion	19
Appendix A: Existing Two-way Flat Plate System	21
Appendix B: One-way Pan Joist System	30
Appendix C: Banded-Beam System	35
Appendix D: Composite Deck and Beam System	37

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Executive Summary

The purpose of this *Pro-Con Structural Study of Alternate Floor Systems* report was to investigate three alternatives to the existing floor system. Each system was analyzed based on structural and non-structural criteria and the feasibility of each system was determined from comparison of the results of the analysis. The systems investigated were:

- Existing Two-Way Flat Plate
- One-Way Pan Joist
- Banded-Beam
- Composite Deck and Beam

The Weill Cornell Medical Research Building has typical bay sizes of 27'-7," 25'-0," and 16'-3" in the North-South direction and 21'-0" in the East-West direction. There is also a 9'-8" cantilever on the front of the building from which the curtain wall is hung.

The only system deemed completely unfeasible was the One-Way Pan Joist system due to large deflections, the depth of the system, and limitations on MEP arrangement. The composite deck and beam system was deemed not feasible based on the preliminary design, but a more economical and viable system could be designed through further investigation. The existing system was deemed the most feasible, but requires a camber on the slab for the cantilever portion. Perhaps a better solution for this would be the banded-beam system, which features post-tensioning. This system also warrants further investigation which could potentially yield a system as viable as the existing one.

Introduction

The Weill Cornell Medical Research Building is the newest addition to the campus of the Weill Cornell Medical College on the upper east side of Manhattan. Located at 413 East 69th Street in New York City, the Medical Research Building is adjacent to other Weill Cornell buildings. The Weill Greenberg Center on its northeast side is an educational facility designed by the same architects as the Medical Research Building. Olin Hall to the east, and the Lasdon House to the north are residential buildings that house students of the medical college. 69th Street slopes down to the east across the site of the Medical Research Building and the utilities run under it. The Con. Edison power vaults are also located under 69th Street and the sidewalk in front of the building.

The \$650 million Medical Research Building is approximately 455,000 square feet with three stories below grade and eighteen, plus a penthouse and an interstitial floor, above grade. The total height of the building above grade is 294'-6." Floors 4-16 are dedicated to laboratory space. The first basement level, as well as the interstitial floor between floors 16 and 17, and the 17th and 18th floors are designated as mechanical floors. The bottom two levels of the basement contain the MRB's animal facility. Service and freight elevators and vertical circulation are located on the west side of the building next to the loading docks on the 69th Street side. Passenger elevators and vertical circulation are nearer the center of the building where the two story lobby atrium welcomes people into this hub of scientific exploration.

In the rear of the building, adjoining the second floor, there is a terrace that bridges the gap between the rear façade of the MRB and the Lasdon House. A grand staircase leads from the lobby on the ground floor up to the enclosed lounge on the second floor that opens onto the terrace. There are two entryways from the Lasdon House to the terrace so anyone living in that building and working in the Medical Research Building would have easy access. The terrace also wraps around the side of the Lasdon House and connects to a stairway leading down to the sidewalk on 70th street.

The building is defined visually by the undulating glass sunshade curtain wall across the front of the building. This curtain wall is attached to the floor slabs that are cantilevered

out approximately 9'-8" from the exterior row of columns to meet it. The curtain wall itself has two layers. The outer layer features the glass sunshade wall with aluminum mullions. That is tied to the inner layer of insulated glass (also with aluminum mullions) by aluminum. The inner layer is anchored to the slab either directly through the mullion or with a steel outrigger.

Structural Systems

Foundation System

The foundation system consists of spread footings bearing on undisturbed bedrock with strap beams as necessary around the perimeter. This undisturbed bedrock is expected to support 40 tons per square foot. According to the geotechnical report, there are two types of bedrock encountered on the site. One type supports 40 tsf and the other 60 tsf, but it is recommended by Langan Engineering and Environmental Services that the footings be designed to rest on 40 tsf bedrock. The slab on grade is a 6" concrete slab resting on a 3" mud slab on 24" of crushed stone. The perimeter concrete walls of the basement are 20" thick with strip footings. Below, Figure 1 is an image of the foundation plan.

The geotechnical report also states that the water table is approximately 50 feet above the foundation level. This poses the problem of seepage through the rock and also uplift on the foundation. A few different design solutions are presented in the report. The resolution of this problem comes in the form of 4-50 ton rock anchors located at the bottom of Stairwell B on the East side of the building to resist the uplift.

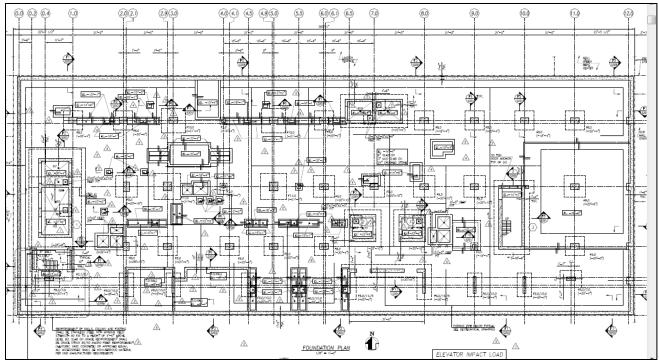


Figure 1: Basement Level 3 - Foundation Plan

Floor System

The floor system in the Medical Research Building is 2 way flat plate concrete slabs. These slabs vary in depth from floor to floor (see Figure 2 below). The bottom reinforcement is typically #5 bars at 12." Top reinforcement and additional bottom reinforcement varies as needed throughout the building. The slabs are especially thick in this building because much of the design was constrained by strict vibration requirements of the medical and research equipment in the building. Laboratory floors were designed to limit vibration velocities to 2000 micro-inches per second. Walking paces were assumed to be moderate (75 footfalls per minute) in the labs and corridors and fast (100 footfalls per minute) only in public areas such as the lobby. There are also vertical HSS members at alternate floors through the middle of the building where the laboratories are located. These members serve no structural load bearing purpose, they are simply meant to tie each floor to another floor to further limit vibrations by forcing any impact to excite vibrations in two floors instead of just one.

	Slab Depth
Floor	(in)
B3	6
B2	12.5
B1	12.5
1	11
2	12
3	12.5
4	12.5
5	12.5
6	12.5
7	12.5
8	12.5
9	12.5
10	12.5
11	12.5
12	12.5
13	12.5
14	12.5
15	12.5
16	12.5
Interstitial	10.5
17	10.5
18	12.5
19	10.5

The front of the building features a cantilever slab extending approximately 9'-8" from the center of column line D. The glass sunshade curtain wall is connected to the edge of the slab. The slab is the same thickness as the rest of the floor, but is cambered up to reduce deflections caused by the curtain wall load. On the second floor, the slab is cambered 1" up. For the third through the interstitial floors, the slab is cambered 5/8" up.

Figure 2: Slab Depth per Floor

Lateral System

Lateral loads, such as seismic and wind loads, are primarily resisted by 12"-14" concrete shear walls located around the stairwells and elevator cores. A couple of these shear walls step in at the second floor. Extra precautions were taken to make sure that the lateral moment still has a viable path to travel through that step in. Severud, the structural engineers for the project, desired to transfer lateral loads toward the perimeter of the building. In the front of the building there are massive $12/14 \times 72$ inch columns from which the slabs cantilever out and the glass sunshade curtain wall is hung. These columns also take some of the lateral loads. See the sketch in Appendix E for the location of lateral system elements on a typical floor.

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Beams and Columns

There is a very wide variety of beam and column sizes in this building. There are almost forty different sizes of columns with dimensions ranging from 12" to 84," with the most typical column being 24 x 36, and approximately fifty five different sizes of beams ranging from 8 x24 to 84 x 48. Except on the laboratory floors, which are quite uniform, the column sizes tend to change from floor to floor. Extra precaution was taken during design and reinforcement was provided to ensure the continuity of the load path through these column transfers.

Columns are located on the specified grid of 4 major rows in the East-West direction for the majority of the floors—except the first floor and below grade, which have a fifth row in the back of the building. Bay sizes are 27'-7," 25'-0," and 16'-3" in the North-South direction and the typical bay in the East-West direction is 21'-0" with end spans approximately 22'-6." Beams, however, are only placed where they are needed. They are rarely in the same place from floor to floor and each floor has a different number of beams. The fourth floor has the fewest with 6, and the second floor has the most with 33. Below in Figure 3 is a typical framing plan for the 5th-15th floors.

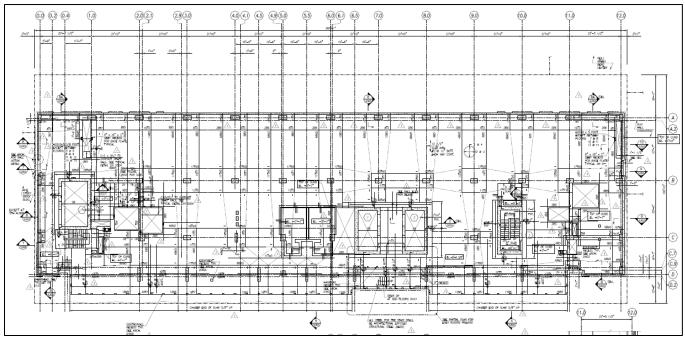


Figure 3: Typical Framing Plan – 5th-15th Floors

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Design Codes and Standards

The Weill Cornell Medical Research Building was designed according to the 1968 New York City Building Code based on the UBC. In 2008 New York City updated their building code, which is now based on the IBC. For this report, the new 2008 code for analysis and design is being used; which references ASCE 7-02, ACI 318-02, etc. For relevance, ASCE 7-05, ACI 318-08, and the AISC Steel Construction Manual 14th ed. will be referenced in this report. The design for the Medical Research Building was submitted in 2008 and the project team decided to file under the old code. The MRB is located in New York City's zoning district R8, the use group is 3 (college), the construction class is I-C, and the occupancy group is D-2.

Structural Materials

The Medical Research Building is a predominantly concrete structure. The f'_c of the concrete varies throughout. See the table below in Figure 4 for the strength of concrete per floor.

On the roof and penthouse levels, there are structural steel members that frame platforms for mechanical equipment (cooling towers on the roof level), and also the window washing platform on the penthouse level. This penthouse level platform provides the means from which the window washing apparatus are hung and operated.

Steel members include W14s as horizontal framing members and HSS 10x8x5/8 for the perimeter. Columns, some of which extend down to the 19th floor (on the west side of the building) and some which continue to the 18th floor (on the east side) are HSS 8x8x3/8. The cooling tower platform consists of horizontal members ranging from W8s – W18s and HSS 8x8s as the columns. Figures 5 and 6 show the window washing platform and 19th floor framing plans.

		f'c Columns
Floor	f' _c Beams and Slabs(psi)	(psi)
B3	4000	8000
B2	5950	8000
B1	5950	8000
1	5950	8000
2	5950	8000
3	5950	8000
4	5950	8000
5	5950	8000
6	5000	5950
7	5000	5950
8	4000	5000
9	4000	5000
10	4000	4000
11	4000	4000
12	4000	4000
13	4000	4000
14	4000	4000
15	4000	4000
16	4000	4000
Interstitial	4000	4000
17	4000	4000
18	4000	4000
19	4000	4000

Figure 4: Concrete Strength per floor

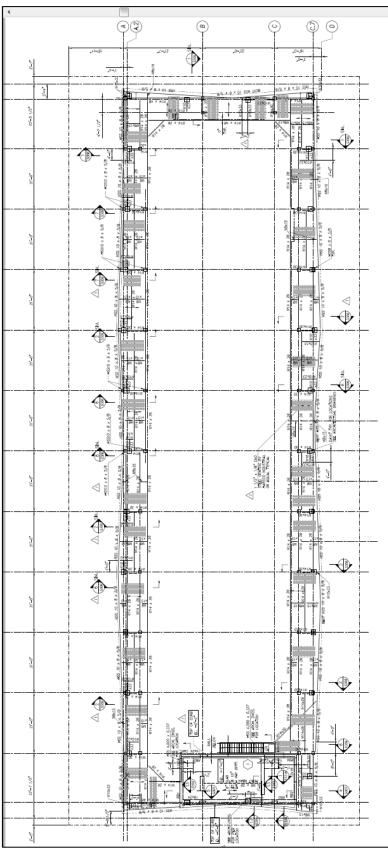


Figure 5: Window Washing Platform Framing Plan

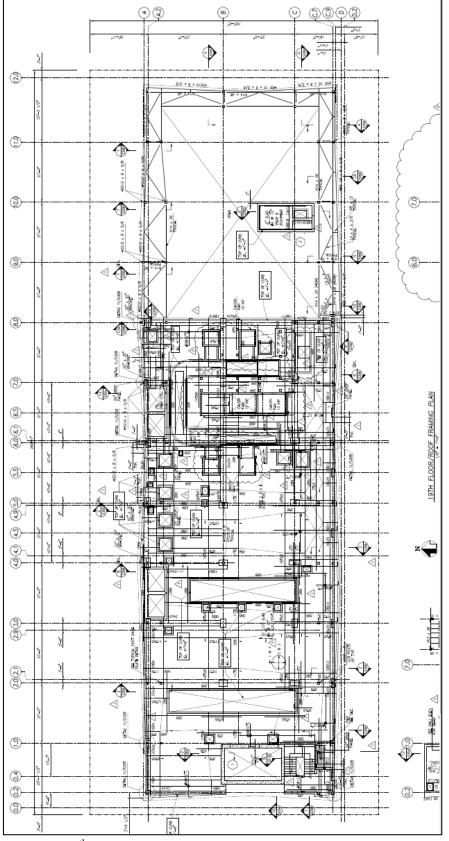


Figure 6: 19th Floor/Roof Framing Plan

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Building Loads

Dead and Live Loads

There are a number of different occupancies within this building. The lower floors feature more business and office-like occupancies while the labs and mechanical rooms present more unique circumstances. The table below in Figure 7 shows some typical loads seen throughout the building. Unique loads for this building include the vivarium, which is located on the third basement level in the animal facility. It is an enclosed facility that acts as a recreation of an ecosystem for the study of plants and animals.

LEVEL	SLAB	CEILING AND MECH.	PART'N.	MISC. DL.	LIVE	TOTAL LOAD	REMARKS
VIVARIUM	160	20	60	5	60	305	-
AVARIUM MEZZ.	VARIES	10	-	15	50	VARIES	OR EQUIP.
B1	VARIES	30	10	15	150	VARIES	OR EQUIP.
LOADING DOCK	150	10	60	5	400	625	+4" TOPPING SLAB
SIDEWALK	150	10	-	50	600	810	-
LOBBY	140	10	-	25	100	275	-
AUDITORIUM	140	10	12	15	100	277	-
LABORATORY	160	10	12	5	60	247	-
OFFICES	160	10	12	5	50	237	-
MECHANICAL	160	30	12	5	150	357	OR EQUIP.
CORRIDOR	VARIES	10	12	5	100	VARIES	-
INTERSTITIAL	130	30	-	5	50	195	-
DATA CENTER	150	10	12	15	300	487	-
ROOF	130	30	-	15	30	205	OR EQUIP.
STORAGE	VARIES	10	12	5	150	VARIES	-
FACADE LOADS	BRICK	9	5 PSF				

Figure 7: Loading Schedule

Floor System Analysis

Four different floor systems including the existing system were analyzed for this report. Calculations were performed for gravity loads and deflections were checked in order to arrive at preliminary sizes for the main structural components of the various systems. The Medical Research Building has four typical bay sizes (Figure 8). The exact bays used for design span between column lines 2.0 and 3.0. It was assumed that member sizes should be

the same throughout the floor for ease of construction and, therefore, either Bay AB or the cantilever bay would control the design for both flexural strength and deflections.

Bay	N-S Dimension	E-W Dimension
AB	27'-7"	21'-0"
BC	25'-0"	21'-0"
CD	16'-3"	21'-0"
Cantilever	9'-8"	21'-0"

Figure 8: Typical Bay Dimensions

Existing Two-Way Flat Plate System

The existing two-way flat plate system was analyzed based on the Direct Design Method. The stipulations for the use of this method were met as shown in Appendix A. The design of this system consists of a 12.5" slab with typical top and bottom reinforcement of #5 bars at 12" O.C. with additional reinforcement in the column and middle strips where needed. The analysis showed the existing design to be adequate for flexure, wide beam and two-way punching shear, and deflections. For a typical detail of the existing flat plate system see Figure 9 below.

Advantages:

A two-way flat plate system results in a thin assembly which allows for lower floor to floor heights. This reduces constructions costs by decreasing the necessary vertical runs of MEP equipment. This system requires simple and reusable formwork, which minimizes the construction effort and cost. Due to the thickness of the slab provided, a fire rating of at least 3 hours can be expected. The shallowness of the slab reduces the weight of concrete, which also reduces cost.

Disadvantages:

Vibrations were not specifically analyzed, however, due to the thinness of the system, it may not be adequate to meet the strict vibration requirements of the laboratory

spaces. In the existing design, vibration is dampened by the HSS members connecting every other floor.

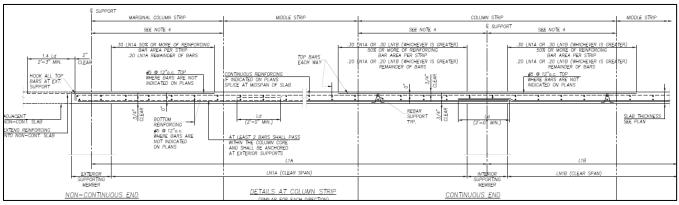


Figure 9: Typical Detail of Existing Flat Plate system

One-Way Pan Joist System

A one-way pan joist system is comprised of evenly spaced concrete joists, a one-way reinforced concrete slab cast integrally with the joists, and beams spanning between columns perpendicular to the joists. For this design, a 40" pan was used. The joists are 8" wide. The slabs, joists, and beams were designed according to ACI 318-08. The slab depth was determined to be 14" and the overall pan depth 26." Flexural reinforcement for the slab was determined to be #5 bars at 8" O.C. For the joists, the flexural reinforcement is two #8 bars.

Two beams were designed. One beam, which would be used for bays AB, BC, and CD, is 24"x26" while the other beam would be used in the cantilever bay and is 24"x38." Both beams have three #10 bars for flexural reinforcement. For the layout of the system, see Figure 10 below.

Advantages:

The advantages of a pan joist system are typically that the dead load is reduced by the pan voids, they are economical for long spans, and MEP equipment can be run neatly in between the joists. This pan joist system can be expected to have at least a 2 hour fire rating based on cover and thickness.

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Disadvantages:

Due to the demands of this building, there are a number of flaws with a pan joist system. The overall depth of the system is much greater than a flat slab and due to the required depth of the slabs spanning between the joists, there isn't very much room for mechanical equipment. Another consequence of a deeper system is higher floor to floor heights in a building that is already nearly 300 feet tall. Formwork is complex and expensive. Deflections are also an issue with this system.

Banded-Beam System

A banded beam system consists of a uniform slab with thickened portions along column lines (usually in the long direction). These thickened portions are typically post-tensioned and called "band-beams." For this evaluation, preliminary sizes for the slabs and bandbeams were arrived at using ultimate strength design. The one way slabs between the beams would follow the same design as the slabs of the one-way pan joist system (which utilized the "unit strip method" and could therefore be extrapolated for a longer span). The assumption was made that the band-beams would have a base equal to the column strip width of the two way slab, 10'-5." A height of three feet for the beams was used for a starting point for calculations which arrived at a design of twelve 7/16" Grade 250 strands spaced 6" O.C. This design would be adequate for flexure and deflections for all typical spans. For the band-beam layout, see Figure 11.

Figure 10: One-Way Pan Joist Layout

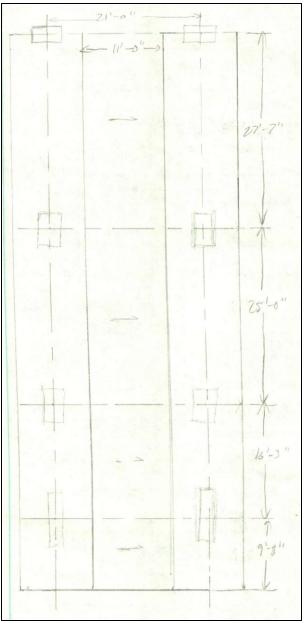


Figure 11: Banded-Beam System Layout

Advantages:

In this design the post-tensioning is adequate without needing any nonprestressed or post-tensioned reinforcement. Post-tensioning is useful for long spans and heavy loads by providing flexural strength and deflection control. The stiffness of this system diminishes vibrations. This system also requires simple and reusable formwork, which saves on cost. Band-beams can be considered two-way slabs for fire ratings, which means this particular system can be expected to achieve a rating of at least three hours.

Disadvantages:

This system features a lot of dead load from self-weight and concrete material. Consequences of the amount of material used include more weight on columns and the foundation as well as less room for MEP equipment.

Composite Deck and Beam System

For the composite deck a 3" 20 gage deck was chosen from the 2008 Vulcraft Steel Roof and Floor Deck catalog. It was determined that 3VLI20 with a 7.5" slab would be necessary based on deflections in the cantilever bay. It was assumed that there are two evenly spaced beams between each of the column lines. Using the 14th edition of the AISC Steel Construction Manual beams were designed as W14x22's with 24 shear studs, girders

for bays AB, BC, and CD were designed as W16x31's with 26 shear studs, and the girders for the cantilever bay was designed as W21x44's with 32 shear studs. For the layout of the composite steel system, see Figure 12 below.

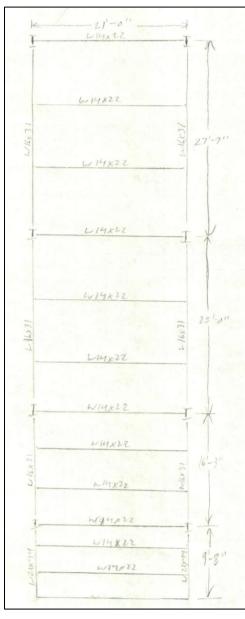


Figure 12: Composite Deck and Beam System Layout

Advantages:

The composite steel system is a lightweight system with standard construction methods for ease of construction and minimization of costs. This system also leaves plenty of room below the slab and between the beams for MEP equipment. Deflections are also moderate.

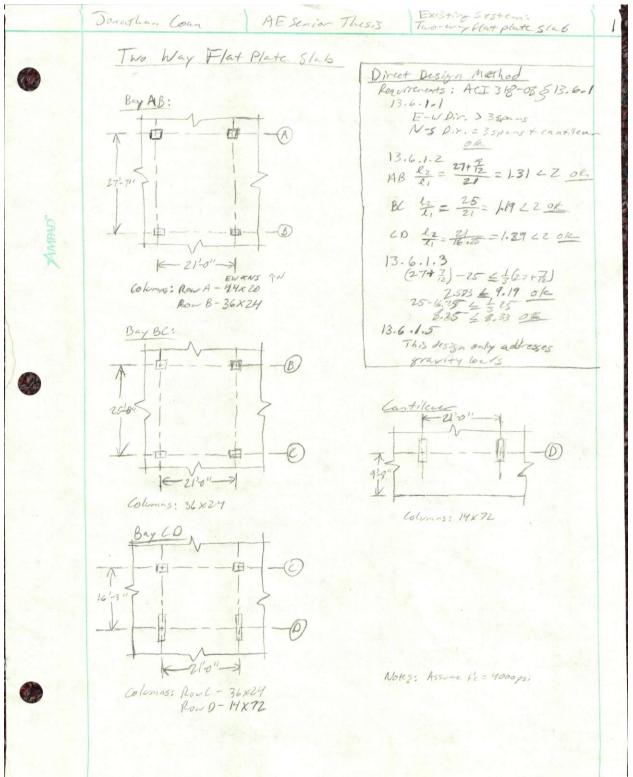
Disadvantages:

Steel is much more susceptible to vibrations than concrete, which is a major consideration for this building. Also, steel is more vulnerable to fire than concrete even with spray-on fire proofing. The overall depth of the system at almost two and a half feet would have an impact on floor to floor heights.

This study has given some insight into the feasibility of four floor systems for use in the Weill Cornell Medical Research Building. The systems investigated include the existing two-way flat plate, as well as one-way pan joist, banded-beam, and composite deck and beams.

All of the systems perform well when it comes to carrying the gravity loads analyzed. However, deflections are a major criteria for the viability of a floor system in this building due not only to the vibration requirements but also the cantilever bay. The banded-beam system performed incredibly well for deflections. The two-way flat plate system also had minimal deflections. The composite deck and beam system saw deflections that would be permissible by code but perhaps too great for this building. The one-way joist system showed the worst deflections.

Floor to floor height is also a concern in the Medical Research Building because of the MEP equipment running throughout the building as well as the number of stories of the building. Although total building height isn't necessarily a zoning issue in New York City, it is a cost issue because a taller building means more vertical runs of MEP equipment as well as more façade material. For this criterion, the two-way flat plate system provides the least depth of the four floor systems. The other systems are comparable as far as depth and space provided within the system.


From the results of this study, the composite steel and one-way joist systems are deemed the least feasible for this building. Both systems have high deflections, lower fire ratings, and would result in larger floor to floor heights. The one-way joist system should most likely be ruled out entirely, but the composite steel system could potentially be investigated further by additional design iterations and a vibration investigation to produce a more economical system and feasible system.

The two-way flat plate and banded-beam systems were the most viable. The existing two-way flat plate system appears to be the most feasible based on this study, reinforcing the decision by Severud Associates to use the system in the Medical Research Building. A flat plate slab provides the lowest floor to floor heights and the most freedom for the arrangement and coordination of MEP as well as simple construction methods with reusable formwork. The only possible disadvantage of the existing design is the solution for the cantilever slab which calls for a camber of 5/8" for most of the floors. Cambering is a

delicate design tool because you can only really design a camber for dead load deflections (assuming the camber is successfully produced in the field).

Another solution for this cantilever slab is post-tensioning, which is the definitive feature of the banded-beam system. The preliminary sizing of the system yielded excellent results for deflections but needed a lot of concrete and reinforcement to do so. The strength of the preliminary system also far exceeded the necessary strength requirements. Further design iterations might lead to a more economical and feasible system which closer rivals that of the existing two-way flat plate.

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Appendix A: Two-Way Flat Plate System

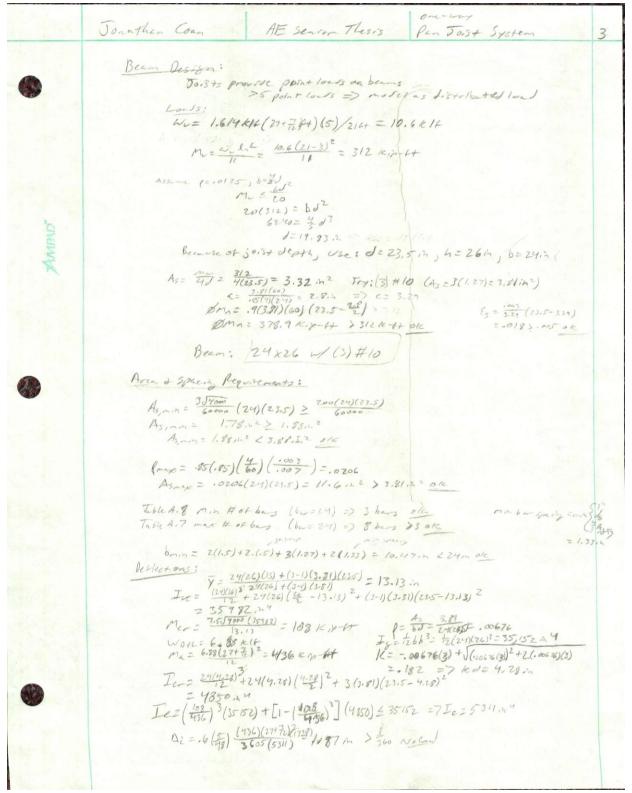
	Jonathan Coan AE Senior Thesis Existing System: Two Way Flat Plate Stab 2
	Bay AB:
•	Minimum Thillauss: ACT 318+08 Table 9.5(c) W/o drop parels Ext. Parel Mo elsebern Fr=60, aupsi)
	$L_{n} = (27 + 7_{2}) - \frac{1}{2}(\frac{20}{12}) - \frac{1}{2}(\frac{24}{12}) = 25.75 \text{ ft.}$ $L_{n/n} = \frac{25.75(12)}{30} = 10.3 \text{ m}$
'9	Existing System: t= 12.5 in > 10.3.2 OK
Anna	$\frac{Moments:}{(From Lowing Diagrams)} = 0 \text{ cond}: 50L = 27 \text{ pst}$ $\frac{From Lowing SelfLoyAt = \frac{12.5}{12}(150) = 156.25 \text{ pst}$ $LMe: 60 \text{ pst}$
	Wr = 1.2 (27+156.25) + 1.6(60) = 316 pst ALI 318-08 613.4.2
	$\frac{A(I 318-08 613.6.2)}{N-5 \ Frame : M_0 = \frac{\omega l_2 l_n^2}{8} = \frac{.316(21)(25.75)^2}{8} = \frac{550 \ kip - 64}{8}$
	E-WFrane: Mo = Wilsla ² 316(22+72)(21-2(36)) = 340 k, p-6+
	ACT 318-08 5 13.6.3 13.6.3.3 - Ext. Edge Uncestrand N-5 Franc: Mint = .75(550) = 412.5 Kin-44 MT = .63(550) = 346.5 KM-64 MEXT = 0(550) = 0
	E-W Franc: Min+=.75 (340) = 255 Kp-Ft Mt = .63 (340) = 214.2 Kp-Ft
	ACT 318-08 513.6.4
	x=0 (no. beams) 15% tocal. strip =-30% K.10-Lt
	N-5 Franc: -412.5 2506 to nid. strip =-103 K.10-Ft - 6020 to Gl. strip =+208 K.10-Ft +346.5 4020 to and Strip =+139 K.10-Ft
	E-W Frame: -255 - 25% to col. stop = -191/k.p-ft
0	+ 214.2 < 7020 to col. Strap. =+129 KAD-Ft + 214.2 < 7020 to mid. Strap=+86 KAD-Ft

1. 126.	Jonathan Coan	AE senior Th	esis 7	xisting system: Two Way Flat Pla	the State I
	Ster Check			10 A	
-	Wide Beam Act	1 = 316 psf 111.	(1995+10 01)		S. Tar
	a= 20	u = 316 pst (11.)	2-	= 11.125 m	1
2 Section	(27+72) - Z	$\frac{20}{2(n)} - \frac{11.125}{12} = 12$. 03 Ft		
		12.03) (21) = 74.8			
	$V_n = V_c = 2.57$	The d			
"a	2254	1000 (21) (12) (11.125) 4. 6 Kips	(rais)		
AME		5(354.6) = 266 k	110 X - 20	ale at	
				-81C 01C	
	Two Way Act. d=11.	100 (Punchay Ster 14375 \$12=5.	-): 719 m		
		= (-316) [(21)(27+7)		= 181/c.ps	
		4)+2(20)= 128,2			1. 7 C
		128) (11.4375) (1000)			
1000	ØVe	=.75-(370)= 278	1CMS > 1811	E.ps olc.	
					1. 195
St. St.					and the second
and you					
					and the state of the
					- And
>					
>					
>					

-	Jonathan Coan	AE Senior Thesis	Existing londitions: Teatres Flat Plate Slab	5
	Coan	I The section (Freeds)	Tho way Flat Plate Slab	-
	Bay BC:			
Sec.	Minimon Thick	mas: ACT 318-08 Table	e 9.5(c)	
	h/	o drop parets & 2n	+	
	1	ty = 60000 psi 2 33 =1	Lmih	
	h	= 25- 34 = 23 6+		
	truch	$= \frac{25 - \frac{24}{16}}{33} = \frac{23}{8} \cdot \frac{4}{10}$		
12	Existing Syst	Km: t= 12.5 in > 8.4 m	ole	
2	Moments:			
	Loads: De	eal: 5DL = 27 pst 12.5 (150) =	154. 20-14	
		re: leapst	ise is pr	
	Wr = 1.2 (27+15	6.25 + 1.6 (60) = 316 pst		
14	ACE 318-08 \$ 13.	6.2 4 Rala2	-3/6/21)/23)2	
	N-3 FA E-W FA	anc: Mo = Wolzenz =.	-316(21)(23) ² -316(25) ⁸ (21-34) ² = 439 K.p-++ -316(25) ⁸ (21-34) ² = 320 K.p-++	
	ACE 318-08 \$ 13.			
	N-S France:	M= .65(439) = 285.	35- Kip-6+	
	E-W France:	M= ,35-(439) = 153.		
	I w Trane.	$M^{-2} \cdot (65(320)) = 208$ $M^{+} = \cdot 35(320) = 112 k_{11}$	p=6+-	
1	ACI 318-08 \$ 13.6	.4	and the second second	
	a	= O (no beams)		
	N-S Frans:	-285,35 - 25% to mis	Strip = -214 kp-ft	
		1 60% to col.	Stop = +92.2 K. 10-64	
dia ta		+ 153.65 ~ 40% to col.		
Charles In	EliF		strup = -156 kip-Et	
The P	E-V Frame			
		+ 112 ~ 40% to m. d.	Strip=+67.2 Kp-Ft Strip=+44.8 Kip-Ft	
100				
500-00				
		2-4-1		

Existing System: Two Way Flat Plate Slab Jonathan Coan AE sensor Thesis 6 Wisc Been We = 316pst a= 24+ Jaz = 11.125m (25) 2 - 2 - 11.125 - 10.574+ Vv=(-316)(10.57)(21)= 70.1 Kps Vn=Vc=2J10000 (21)(12)(11.125)(1000) 2354.6 K.195 \$ Vn = . 75 (359.6) = 266 Kas > Vu= 20.1 Kas Dia Two Way: J= 11.4375 Vu= WuA=1.3(6) [(21)(25) - (24)(36)] = 164 Kips bo = 2 (24)+2(36) = 120 m Vc= 4 J4000 (120) (11.4375) (1000) = 347 Kips BVc=.75(347) = 260 Kips > 164 K 04

	Jonathan Coan. AE Senior Thesis The Way Flat Plate Slab
	Bay CD Minimum Thickness:
	Flinimum Thilkhess:
~	W/o drap parets 3 dr = tom Int. penets Fy = 60000 psi 5 33 = tom
	Ly = 60 800 ps;) 33 cmm
	Ln = 21-1/2 = 19.8 H
	$t_{m,n} = \frac{19.8(n)}{33} = 7.2 in$
	Existing System: t= 12.5 in > 7.2 in 0/5
	Moments:
9	1. R. R. J. SAL = L. P. act
ALL ALL	Londs: Deal: 50L = 60 pst Selfwyt = 156.25 pst Lnc: 100pst
F	LAC: 100pst
	Ww = 1.2(60+156.25)+1.6(100)=420pst
	N-5 Franc: Mo = - 42(21)(14+32-2(72)-2(24))2 = 165 km-14
	Nos France: Mo = = 165 Kip-H
	E-WFranc: Mo = 42(16.25)(19.8) = 334.5 k.g-++
	E \$11, 200- 8 - 001.0 mig 10
0	N-5 Franc: M=. 45 (165) 2 107.25 FM-H
	Mt=.35(165) 2 57.75 km +++
	E-WFrane: M= . (5 (3)4,5)= 117 E.p-1+
	M+= 135 (3345) = 217 KAP-++
	753 to 1 1 1 multing
	N-5 France: - 107.25 < 25% to col. Strip =- 90.4 kip-44 N-5 France: - 107.25 < 25% tomid. Strip = -26.8 kip-44
	1 to 20 to colo Strip = + 34.7 kip ++
	+57.75 ~ 10% tond. Store = + 23.1 km-H+
	- 7500 to pal. strap = - 87.8 k.p-ft
	E-WFMAC: -117 25% tonid strip = -21.3 kp-ft
	60% to col. Strip=+ 130.2 km-++
	+217 < 402 to mid. Stone = + 86.8 kip-4t
-	


AE Senior Thesis The way Flat Plate Stab Jonathan Coan 8 Shear wide Beam : Ww = 420 pst a= 3 ft daug = 11.125 in 2 11.125 = 8.07 ft Vu= (.42) (8.07) (16.25) = 55 Kirs Vn = Vc = 254000 (16.25)(12)(11.125)(tous) = 274 kips NVAZ.75 (274) = 205 Kips > 55 K OK Two way : 2= 11. 4375 $V_{v} = (v_{v} A = (.316) \left[(16.25(21)) - \left(\frac{1}{2} \left(\frac{24(3k)}{144} \right) + \frac{1}{2} \left(\frac{14(72k)}{144} \right) \right) \right]$ = 106 k msbs = 120 m $V_{c} = 4 \sqrt{1400} (120) (11.4375) \left(\frac{1}{1000} \right) = 347 k ms$ $\sqrt{V_{c}} = .75 (347) = 260 k ms > 106 k ok$

	Jonathan Coan AE Scalar Thesis Thesis The way Flat Plate State 9
۲	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$T_{able} T_{able} = .0024 \frac{WL^4}{EL} \qquad \qquad T_s = \frac{1}{2} \frac{5h^3}{2} = \frac{1}{2} \frac{(21)(12)(12)(12)(12)(12)(12)}{E_c} = \frac{1}{2} $
'a	ADAMY = . 0131 M
AMM	$M_{15}dle_{5trop'} = \frac{12.5}{12} (21) (150) (5325) = 1066 plot$
	AD map = .0026 (1.066)(21)4(1728) 3605(4/015)
	Aumar= ,0063 in
	Additional DL Dett. After Las The: 05742: X=3
	(01.5 top: Digtom = 3 (.0131) = .0393 in m.J. Stop: Digtom = 3 (.0063) = .0189 in
	Emmediate LL Dettectrons: LL= leopot
	Column Strip: WL = 60(21) (1675) = 850.5 # # Tuble 9-2: (.551) (21) * (1728)
	$T-he 9-2:$ $A L_{max} = .0048 \frac{(.551)(21)^{9}(1728)}{(3885)(41015)} = .009322$
	$\frac{M_1 J dle 5trp:}{\omega_L = 40(21)(-325) = 410 p/t}$ $\Delta_{Lmms} = .0048 \frac{(.41)(21)^4(.722)}{(3605)(.4(015))} = .0045 in$
dime ?	Worst case: $\Delta = .0073 + .0373 = .0486 in$ $\frac{1}{430} = \frac{21(12)}{430} = .525 in >> .0486 in$
13 1 14	
A	

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Appendix B: One-Way Pan Joist System

Pha Joist Syst AE Senior Thesis Jonathan Coan ACI 318-08 \$ 8.3.4 Ux: 48/8 joist spren Destan as slabs & beams 28'-> Assume: jois to span N-S dir. -484 -Slab Destign: $\begin{array}{l} ny \ A \ B: \ home = \frac{2}{24} = \frac{2}{24} = \frac{13.71}{10} \ mm = \frac{13.71}{10} \ mm = \frac{2}{24} = \frac{2}{24} = \frac{13.71}{10} \ mm = \frac{1}{24} = \frac{2}{24} \left(\frac{13}{10} - \frac{10.71}{10} \right) \ hm = \frac{1}{24} = \frac{16.25(12)}{10} = \frac{7}{10} \ mm = \frac{1}{10} = \frac{16.25(12)}{10} = \frac{7}{10} \ mm = \frac{1}{10} = \frac{16}{10} = \frac{16}{10} \ mm = \frac{1}{10} = \frac{1}{10} \ mm = \frac{1}{10} = \frac{1}{10} \ mm = \frac{1}{1$ h=14in =) Agine: d= 12.5 in Lows: Dead: SOL= 27854 Self = 14 (150) = 175 pst Laci 60pst Whe 1.2 (27+175)+1.6(60)= 338. 4 post Assume: cards fixed: Mu = wel? ,3384(27772) = 21.5 K-64/64 As = My = 21.5 4(25) = . 43 . 1/2+ =) Try #5@ 8" O.C. (As = . 46 . 2/2+1) Actual d= 14-,75- 7 = 12.99m Assure Es X Ey: a = Astr = .46(60) = .676in 18542 = .45(9)(12) = .676in L= B= .715 .: Es= = (J-4) = -003 (12.14-.775) = .046 7.005 =7 \$ =. 9 & Mn = & Asty (d-2) = .7(.46)(60)(12.14- 1676) & Mn = 26 K-ct, > M-= 21.5 K-ft, BK Use: K=14 in , #5@8"0.c. Joist Design : Assume: h=26in=> dx23.5m Jon mannih Londs: from slab: WU= 338. 4pst (4++) = 1353.6 pl+ JU3T Sulf weight = 1.2 [26(3) (150)]=260 plf Wy= 1614 plf My= 42= 1.44(2+2)2 = 102/K-44 As= 402 = 1.09 in 2 VE: (2) #8 (As= 2(-71)= 1.58 ...2) a= 125HC b = (.85) (4) (8) 5- = 3.49 in C= 4.1m Es = - (235- 4.1) = 014 >.005 0 k BMAZ.9(1.50)(60)(23.5- 3.49)= BMAZ 155 Kip-++ JMUZ 102 K-++ OK Joist: 8x26 w/ (2)#8

One- Way AE Senior Thesis Pan Jo.3+ Syster Done than Coan 2 Aread spacety Regelsements: Azman = 3/1000 (81)(23.5) = 200(81)(23.5) Azman = .595 m 2 2 .627 1 2 Azman = .627 m 2 2 /.58 m2 018 lap=.85(.85) (to) (-00) =.8206 Asam= .0206(8)(23.5) = 3.87 in 2 > 1.58 in 2 old Taske AD Min #of day (bard) => 1 bang 22 ole Table A.7 max # of bus (bust) =7 2 bas \$2015 Ban = 2(1.5)+21.5)+2(1)+1.33 = 7.37. 2812 OK Reflections: $\frac{f_{2225}}{f_{22}}: \frac{bh(\frac{h}{2}) + (n-1)A_{5d}}{f_{22}} = \frac{g(24)(\frac{24}{5}) + (2-1)(1.58)(23.5)}{g(26) + (2-1)(1.58)} = 13, 08, m$ $\frac{f_{122}}{f_{22}} + \frac{bh(\frac{h}{2} - y)^{2}}{f_{22}} + (n-1)A_{5}(J - y)^{2}$ $= \frac{(g)(2e)^{3}}{f_{22}} + (g|(2e)|(\frac{24}{2} - 13.08)^{2} + (2-1)(1.58)(23.5 - 13.08)^{2}$ 2 5506 in 3 Ec= 57000 Jun = 3605 Kg; $M_{cr} = \frac{f_{r} \cdot f_{cr}}{y_{cr}} = \frac{7.5 y_{000} (5506)}{23.5 - 4.1} = 11.22 k_{1} + 64$ $W_{04L} = 808 + 2400 = 1048 p_{1} + 1048 k_{1} + 11 = 10.22 k_{1} + 64$ $M_{n} = M_{04L} = \frac{1048 (2743)}{12} = 66.45 k_{1} + 44$ P= 43 = 458 10084
$$\begin{split} & k = -\left\{n + \sqrt{\left(p_{1}\right)^{2} + 2\left(n = -,0054\left(2\right) + \sqrt{\left(.0054\left(2\right)\right)^{2} + 2\left(.0054\left(2\right)\right)^{2} + 2\left(.0054\left$$
$$\begin{split} \mathcal{I}_{e} &= \left(\frac{m_{cr}}{m_{a}}\right)^{3} I_{s} + \left[1 - \left(\frac{m_{cr}}{m_{a}}\right)^{3}\right] I_{cr} \leq I_{s} \\ &= \left(\frac{11.22}{16.45}\right)^{3} (11717) + \left[1 - \left(\frac{11.72}{61.45}\right)^{3}\right] (1372) \leq 11717 \end{split}$$
= 1422 in 4 10-3 =) K=-6 <u>mart</u> Ecle = .6 (5) (66-45) (27+7,) (770) = 1.07 in > 2 Ecle = .6 (98) 3605 (1422) = 1.07 in > 2 360 Aiz K(5)

	areany .
	Jonathan Coan AE Senter Thesis Pan Joist System 4
	Cantileur Bay Assence. Josts some Erter dom
0	Beam Pestim
	Vellecton Clerk:
	Louds: Peal: SOL = 57(21)(4) = 4. 789 kins
	5/2 3 5014- Le. Jult = 14 (150) (21) (4) = 14.7 K. 105
	$J_{0.34} = Scl4 - Leo J_{0.4} = \frac{22(D)}{104}(150)(21) = 2.1 \times 105$ $P_D = 21.588 \times 10^{-25}$
	Live: 50/21)(4)=4.216,705
	Pote = 4.21 chas Pote = 21.588 + 4.2 = 25.788 kaps
R	Port - 21.501 + 1.2 - 25. 188 x.193
W	Ma= 25.788 (97 =) + 25.768 (5+ =) + = (25.702) (#+ =) = 395 kp-6+
A	$\Delta_{n/6=} = \frac{1}{360} = \frac{(9\tau_{2}^{2})(12)}{360} = 1.322.12$
	$\Delta_{K/0} = 360 = -360 = -322.12$ $- 7.516/03 = 2 K = 2.4$
	$\begin{array}{c} \Delta_{KID} = 360 = .522.5 \\ & 5.512 \left(0.3 \right) \geq K = 2.4 \\ D_{L} = K \left(\frac{1}{470} \right) \underbrace{M = 2}_{F = F = } \\ D_{L} = K \left(\frac{1}{470} \right) \underbrace{M = 2}_{F = F = } \\ & 1322 = 2.4 \left(\frac{1}{416} \right) \underbrace{(345)(1+\frac{2}{5})(1+\frac{2}{5})(1+\frac{2}{5})(1+\frac{2}{5})}_{2605 Te} \\ & Asseme: b=24'' [01,748 = \frac{1}{5}bh^{3} \end{array}$
	1322=2.4 (18) (142) (142) (11) JIen= 13, 736 14 =) In = 101, 748 14
	Assence 6=24" 101,748 = to 64.3
	Try: 24"x 38" beam h= 37.05 => 450 h= 38m
(A)	
	LRF. P Design
	Low : Pu = 1.2(21.588) +1.6(4.2) = 32.6 tiss
	$M_{\nu} = 32.6 \left(9 + \frac{4}{12} \right) + 32.6 \left(5 + \frac{4}{12} \right) + \frac{1}{2} \left(32.6 \right) \left(1 + \frac{4}{12} \right) = 500 \text{ k is} - 6 + \frac{1}{12}$
	As = 10 = 500 + 4(355) = 3.52 m2 Try: (3) # 10 (As = 3.81,22)
	2 21/10) 0= 38-1.5-1.57 = 35.305
	$a = \frac{3.31(60)}{.95(4)(24)} = 2.8 \text{ in } = 32 - 1.5 - 1.5 - 1.5 - 1.5 - 2.5 - 3.55}{2} = 35.365$
	\$1 = .9(3.21)(60)(35.365-22) = .029 3.005 05 \$1 = 582 k.p-64 > Auesouk-64 019
	$\begin{array}{rcl} A_{rea.} & 5_{preens} & 3 \\ \hline A_{smin} &= & \hline Leoo} & (Z4)(35.365) \ge & 200 \\ \hline A_{smin} &= & \hline Z_{s}(83) \\ A_{smin} &= & Z_{s}(83) \\ \hline A_{smin} &= & \hline Z_{smin} \\ \hline A_{smin} \\ \hline A_{smin} &= & \hline Z_{smin} $
	$A_{3mm} = \frac{2.68}{10^2} \ge \frac{2.83}{2.83} = \frac{2.68}{10^2} = \frac{2.83}{10^2} = $
	Asmin = 2.83 m2 2 3.8/1220K
	14 1 1003
	Roma = 185(1.85) (4) (-083 (007) = .0206
	As, my = .0206(24)(55.365)= 17.5. h = 2 3.81 h = 015
62	

	Donather	Coan	AF Se	nior Thesis	Pan Jo.3+ Syst	cn l	5
Test in	Donal	coan	1 12 2		Fan Joist -25 M		-
	Le=Ch	eck Deflec	tions :	~			
0				$\frac{(3,8)(35,365)}{(3-1)(3\cdot81)} = 1$			
		Int = 24	(38) + (24)(12. + (24)(176.8,2,4	32) (= -19.14) 2+	(3-1) (3.81) (35.865-19,1	4) ²	
the fit				169)			
		$M_{n} = \frac{1}{315}$	35.365-3. K-44	168) .29 = 137.7 k.	20-64-		
		P= 3.81 24(35-365)	00 45				
"g		K=004s Kd= 5.	-(3) +) (.004 35 in	5(3)) ² +2(.0045)(3	1 = .157		
ant				1/53512	91) (35.25-5.25) ²		
-		2 115	+ 24(5-1 22 m 4	的(3空)+3(3.	21) (35.25-5.25)		
		Fo= た (24)	(36)3 = 109	7,744,24			
		$I_e = \left(\frac{137.7}{315}\right)^3 (I_e = 15)$	109744)+[1. 623.24	- (137.7))) (11522	L) = 107744		
6				317728) 3) = . 28 2 mL			
-	-	+ileue	R 7	4"× 38" / (140		
	C	anniter	bean i L	All W/C	s) # 10		
							5
-							1
							1

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Appendix C: Banded-Beam System

	Jonathan Coan AE Scaror Thesis Band Bean System 1
۲	$\begin{array}{llllllllllllllllllllllllllllllllllll$
"CIVARA	$W = 1, 2(7, 13) + 1.6(1.26) = 10.57 \text{ klt}$ $M_{u} = \frac{\omega_{0} L^{2}}{12} = \frac{10.57(27+7)^{2}}{12} = 670 \text{ kip-ft}$ $Beam \text{ Design: Assume: } 6-250 \text{ st2} (f_{\mu\nu} = 250,000 \text{ psi}), \text{ free=150,000 pmi}, \text{ bouses tenders}$ $f' = 4000 \text{ psi}; \qquad f' = 216,000 \text{ psi})$
K	$\begin{aligned} \left(p = \frac{Ap}{3(10.5 \text{ Krz})} = .000\ 22.05\ \text{Ap} & \frac{f + p_{y}}{f_{p_{y}}} = \frac{215}{250} = .86\ 3.85\ = \right)\ \delta_{y} = .4\\ f_{p_{s}} = f_{p_{y}}\left[\frac{1}{1-\frac{\beta_{p}}{\beta_{1}}}\left(\frac{f_{p}}{\epsilon_{z}}\right)\right] = 250,000\left[1-\frac{.4}{.85}\left(\frac{.000205\ \text{Ap}\left(250,000\right)}{.40000}\right)\right]\\ f_{p_{s}} = 250000 - 1507\ \text{Ap} \qquad 2.5p_{y}\\ a_{z} = \frac{A_{y}f_{y_{s}}}{.85426} = \frac{Ap(250000-1507\ \text{Ap})}{.85(14000)(10.9(12))} = \frac{250,000\ \text{Ap} = 1507\ \text{Ap}^{2}}{.4284000}\end{aligned}$
۲	Mu & Mn = DAD fors (dp - 2) 670 (12) = . 9 Ap (250,000 - 1507 Ap) (33 - 250,000 dp - 1507 Ap ²) Try: 12 - 7 ("Dix. Strends Q 6" D.C. Ap = 10.5(2(12) (.108) = 27.2 in ²
	$\begin{aligned} f_{p} &= .005576 \\ f_{ps} &= 209000 \text{ ps}! \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	OMn = 9467 Kpp++ 7690 k++ ok ACE 318-08 \$18.9.2. Asmin = 1004 Act = 1004 (10.5)(12)(15) = 7.56 m² 2 27.21m² ok
•	

	Jonathan Coan	AE Serior Thesis	Band Beam System	12
	Dellect. 20-5: (126) (36) y = (126)(36)	$\binom{25}{2} + (20)(27.2)(33)$ = 19.6 in		
	$I_{ut} = \frac{126(36)^3}{12} +$	126 (36) (18-H.L)2+ Zo(27.2) (33-19.	6) ²	
	Z 599,181. M. = 7.50 yano ((579181) = 1361 Kip-6+		
		$\frac{1}{2} = 532 k_{ij} - t +$	Ig = (26(35)) = 489 858. 4	
	$l = \frac{27.2}{726(36)} = .0$ K =006(20) = 10	06 006(20)) ² +2(-005)(20) = .384	=7 kd= 12.7 m	
MINA	$ \overline{L_{cr}} = \frac{124(12/7)^2}{12} + \frac{1}{2} = 321418 $	126(12.7 (22))2+21(27.2)(3)-1	2.7)2	
	$I_{c} = \left(\frac{1361}{532}\right)^{3} (489)$	1888) + [1- (1361) 3] (321 418) 4	- 489 800	
	= 3, 192, 151 Ie=Ig= 489,		Shind Carlos	
	$\Delta_{i}=\cdot 6\left(\frac{5}{98}\right)^{5}$	72 (27+7) ² 3605 (481 880) = .0000 143,2	L 2 6/5	
de la		1.5' x 3' ~/ (12) 7 "strands	Q 6" O.C.	
	Cantileur Day:	2pan: 7-8 b= 10-611 une: h= 36in =7dp=332		
	Loads: Deal: 5/25-Self Le Beam Self an	$30L = 57(21) = 1197 pt ight = \frac{19}{12}(150)(10,5) = 1337.5p ight = \frac{36}{12}(10.5)(150) = 4725p ight = \frac{36}{12}(10.5)(150) = 4725p ight = 12(10.5)(150) = 12(10.5)(150) = 4725p ight = 12(10.5)(150) = 12(10.5)$		
		50(21) = 1050plf 7.76) +1.6(1.05-) = 18.99 K	14	
		1+ == = \$6 Lip-++		
	Use: 10.5	x3' w/ (re) 76" strands P 12"	'o.c.	
	1			

Technical Report 2 Advisor: Dr. Boothby Jonathan Coan Appendix D: Composite Deck and Beam System

AE Sense Thesis Jonathan Coan Composite Deek & Beams Composite Decking = 3"-20 Gage Composite Deck Buy AB: (27'-7" X 21") Vuleraft Steel Roof and Flow Deck (2008)] Superimposed Live Load = LL + SDL = 60+27 = 87pst Assume beams spaced approx. 9-2" => 3spans (N-3) for Bay AB 83 54 3VLI20: SLArm= 150rst > 87rst ok w/5" This Max Unshoved Uhr spen = 13'-4" > 9'-2" =) No shor y Total Depth= 5 in toppis=2in Self=weight = 45 pst Assume concrete fie = 4000ps; Composite Benns TUSMy AIX Steel Construction Manual 14th ed. 7 Bay AB Lows: Dead: stablack: 45 pst > 72 pst Assence beams spaced 9,1943 Live: 60pst Wy = (1.2(72) + 1-6(60)) (9.194) = 1677 plf MU = 42 2 = 1.687(21)2 = 93 k.p-4 b= 15pm/8 = 21(12) = 31.5, m 2 controls bert = 26=63, m mal 2 a.d. hight = 9.194(12) = 55 in Assume a=1: a = 20 a=1 => 2000 = .85 (4) (63) = 214, 210, ps Y2= 5-1= 4.5.2 From Table 3-19 (1-1/2= 4.5, 22, 2214) Try: W14x 22 WERn=199Kipsom= 233 Kp+++ a= .95(4)(63) = .98 in <1"6K Styds: 399 = 11.7=712 J= 13.7.2 A = 6.49 m 2 24 studsperbi
$$\begin{split} M_n &= A, F_Y \left(\frac{1}{2} + t - \frac{5}{2}\right) \\ \beta_{M_n = -, 1} \left(6.49 \right) \left(50 \right) \left(6.87 + 5 - \frac{93}{2} \right) \end{split}$$
BM-2 277 Km- ++ > Mu= 93K- ++ 015 Use: W/4x22 424 stub

	Jonathan Gan	· AE senior Thesis	Composite Det& + Beans	
Sec.	Deflections	0.11.1		
R	Wet Conc	rete Retlection:		P
		= 45(9.199)+ 22= 435 plf		
	1	5 w 1 - 5(.436) (21) 4/17	28)	
	ANE=	5 ~ 1 ^M = 5(.436)(21) ⁴ (17 384EI = 384(21000)(19)	9) >>/ / /	
		1 - 21(12) = 1.05 ,2 >. 33		
	The -	240 - 240 - 240		
	- Loclow	Deblection :		P
	W	= (019.194)= 552 plf		
Im	ILE =	577 (7256 3-20 w/ Y= 4. (.552)(21)4(1728) = .3841 24(2200)(517) = .3841	50-22, = 189)	
AL	$\Delta_{11} = -5$	(.552)(21)4(1728) - 38413		
W	Tr 3.	84 (2100) (517)		
X	Allmay =	21(12)7 n 7.384 ok		
	1			
	Lomposite Girder	5		
	0 00			
	Bay AB	Dend: Wd= 72 (9.194) +2	1. 1.04 11	
	Locis:	Love: 4 = 60(9-194) = 552	6= 687 p10-	
		tive: we = 60(1.144) = 054	L p / F	
10	Pu=(1.2)	(684)+1.6(552) (21)= 35.0	8 1E,25	
	Mu= Pa= 3.	5.8(9.194)= 329 Kip-6+		
	b=kpan,	18 = 8 = 41, 4 in to	n-trols	
	na/zad	$18 = \frac{(27+\frac{7}{72})^{(12)}}{8} = 41, 41, 41, 4 = 6$ with = $\frac{25(10)}{2} = 150.3$	berg=26= 82-8,2	
	Assume: a=1	EQure = . 85(4)(82.8) :	= 282 K. 25	
	E TI	1 2 42 1. 14		
	From Tab.	le 3-19 (w/Yz=4.5, 29, 2	(82)	
	Tavi	W16×31 W/29== 213K 0	the State of	
		1.77		
	a=	213 55(9182-8) = .76 in 2/" ok		
		5.912 -	Styds:	
	A5 = 1	1.13 122	213 = 125=713	
		1.1	26 studs per girds	er
	M	$= A_{5}F_{y}\left(\frac{2}{2}+t-\frac{2}{2}\right)$ =.9(1.13)(G)($\frac{52}{2}+5-\frac{32}{2}$)		
	Øm	=-9(1.13)(5)(2+5-2)		
	pm.	nz 430 Kip-Ft 7 329 K-	tt ore	
	14	1111121 121		1
	Use: _	W16×31 N/265+05		

AE Senior This 3 Jonathan Corn Composite Decket Beams 3 Live Lord Deblection Lieck: $A_{LL} = \frac{Pl^{3}}{28EI} = \frac{II_{LB} = B25^{-1}}{28EI} \frac{I}{28} \frac{II_{LB} = B25^{-1}}{28(27+1)^{3}C(1729)}$ ALL = . 628 in ALL = . 628 in ALL max = (27+75)(12) 3600 = . 919 m >. 628 in OK Cantilever Bay Girders Cantiler 9- 2 Shubble been spren = 4.2376+ Lows: Deal : 2457 (4.93) + 45(4.93) + 22) (21) = 10. 81 kps Low: PL = 50 (4.93) (21) = 5.07 Kps Pu= 1.2(10.81)+1.6(5.01)= 21.1 Kips Perturit = 46 (13) (21) = 12.55 10.75 MU= Pub + Ped + Pext l= 21.1(4783) + 21.1(9.67) + 12.55(9.67) (16.1) MU= 427 K.M-24 W16x31 w/ 265+cds & Mu = 430 K.M-24 Strik works Fu- 440 bay $\begin{aligned} Deflectrons & \frac{Rb^2}{6EE}(3l-b) + \frac{P_{c}l^3}{3EE} + \frac{P_{est}l^3}{3EE} = \frac{21.1(4.52)^2}{2RE} \\ \Delta_{LL} &= \frac{21.1(4.83)^2}{6(2104)} \frac{21.4(4.83)^2}{3(2100)} + \frac{21.1(1.67)^3(1710)}{3(2700)(825)} + \frac{172.55(9.6.73^3(1720))}{3(2700)(825)} \end{aligned}$ ALL= ,74 m ALLMAND = 360 = . 322, M LALL NO Good Ira= 1907.5 m3 Assume = 1 EQn= 185-(4)(29) = 58 kins From Table 3-19 (w/ 42= 4.5, 2an 658) Nothing Fits that also needs I rea Solution =)

	TAI AT TAI COMMAN					
- Viet 2	Jonatha loan AESensor Thesis Composite Decket Bams 4					
1.00	Use: 3 VLZ 20 W/7.5"slab					
-	a=4.5 Ellara=35(4)(29)(4.5)=261 Kaps					
	T-6K 3-19 (¥2=7, 22, 261)					
- Aller	Try W21×44 W/EQn= 260k & M=625k-6+) ILE 1960,23 >1907.3					
	d = 20.7.5 $A_{5} = 13.5^{2}$ $A_{5} = 13.5^{2}$ $A_{5} = 13.5^{2}$ $A_{5} = 13.5^{2}$					
"Cheinn	M. = As Fy (2 +t - 1) I M. = 1(13) (50) (2 - 7 + 7.5 - 4.5) I M. = 760.5 K. 10-64 > MU = 427 K-64 0 K					
×	USC: W21×44 4/ 325+45					
Francis ()						
a far an a						
are son						
	and the second					
A TAN						
Service Services						